TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction

Kelvin Y. Kwan,1,* Andrew J. Allchorne,2 Melissa A. Vollrath,1 Adam P. Christensen,3 Duan-Sun Zhang,1 Clifford J. Woolf,2 and David P. Corey1
1Department of Neurobiology and Howard Hughes Medical Institute Harvard Medical School Boston, Massachusetts 02115
2Neural Plasticity Research Group Department of Anesthesia and Critical Care Massachusetts General Hospital and Harvard Medical School 13th Street Building 149 Charlestown, Massachusetts 02129
3Program in Neuroscience Harvard Medical School Boston, Massachusetts 02115

Summary

TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold (≈0°C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.

Introduction

TRPA1 is a member of the transient receptor potential (TRP) family of ion channels. Originally identified as a protein overexpressed in liposarcoma cell lines (Jaquemar et al., 1999), TRPA1 (or ANKTM1) is similar to other TRP channels in having six putative transmembrane domains with a putative pore-forming helix between the fifth and sixth transmembrane domains (Clapham, 2003). Like many other TRPs, it has ankyrin repeats in the N-terminal region. However, TRPA1 is unique among mammalian TRPs in having many as 17 ankyrin repeats. TRPN1 (or NOMPC), a proposed mechanosensory transducer in flies (Walker et al., 2000), has 29 ankyrin repeats but is present only in genomes of lower vertebrates and invertebrates.

Interest in TRPA1 has come from a search for the molecular basis for several different senses. To identify the mechanically gated transduction channel of vertebrate hair cells, Corey et al. (2004) used in situ hybridization to screen all mouse TRP channels for expression in the inner ear and found TRPA1 message in neonatal hair-cell sensory epithelia. TRPA1 mRNA in the utricle appeared during development at E16, the day before hair cells become mechanically responsive, and antibodies to TRPA1 labeled the tips of mouse and frog hair-cell stereocilia, the site of mechanotransduction. Zebrafish were found to have two TRPA genes, now denoted TRPA1a and TRPA1b. Morpholino knockdown of TRPA1a expression in zebrafish embryos decreased cytoplasmic loading of styryl dyes such as FM1-43, which pass through intact hair-cell transduction channels (Meyers et al., 2003). Microscopic recordings from the inner ear, produced by the hair-cell transduction currents, were also reduced in zebrafish TRPA1a morphants. In mice, knockdown of TRPA1 expression in embryonic hair cells using two different small interfering RNAs largely abolished hair-cell transduction currents. Thus, TRPA1 was proposed as a candidate for the hair-cell transduction channel (Corey et al., 2004).

TRPA1 has been implicated in pain sensation as well. It is activated by allyl isothiocyanate (mustard oil) and by other pungent chemicals including allicin (from garlic), cinnamaldehyde (cinnamon), methysalicylate (wintergreen), eugenol (cloves), and gingerol (ginger) (Jordt et al., 2004; Bandell et al., 2004; Bautista et al., 2005; Macpherson et al., 2005), all of which elicit a painful burning or pricking sensation. TRPA1 is expressed in small-diameter neurons of the trigeminal and dorsal root ganglia (DRGs), mostly in a subset of cells that express TRPV1 but not TRPM8 (Story et al., 2003; Bautista et al., 2005; Kobayashi et al., 2005). TRPV1 is thought to sense painfully hot temperatures. TRPM8 is activated by cool temperatures and by chemicals such as menthol and icilin that feel cool when applied to the skin (McCann et al., 2002; Peier et al., 2002). Because TRPM8 is activated below 23°C, which feels cool but not painfully cold (Morin and Bushnell, 1998), another channel is thought to mediate cold nociception. Story et al. (2003) reported that TRPA1, when expressed in CHO cells and assayed with Ca2+ imaging, is activated by temperatures below ~15°C, temperatures that in humans elicit burning, aching, or pricking pain (Morin and Bushnell, 1998). Thus, TRPA1 was proposed to mediate the sensation of cold pain, an idea supported by reduced cold hyperalgesia with TRPA1 knockdown in vivo (Story et al., 2003; Obata et al., 2005). However, Jordt et al. (2004) found that most mustard oil-responsive trigeminal ganglion neurons were not sensitive to cold (5°C), which may mean either that TRPA1 is not a cold pain sensor or that additional ion channels can be activated by mustard oil in trigeminal ganglia.

The prolonged latency of activation by these pungent compounds, and by carbachol when TRPA1 is cotransfected with the muscarinic acetylcholine receptor, suggest that TRPA1 channel opening can be mediated by...
second messengers. Moreover, Δ9-tetrahydrocannabinol (THC), which binds to the CB1 receptor, also activates TRPA1 in a heterologous system, as does bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, B2R (Jordt et al., 2004; Bautista et al., 2004). Recently, Bautista et al. (2008) have deleted the Trpa1 gene in mice, and find that knockout animals lack sensitivity to mustard oil and to bradykinin but not to painful cold or mechanical stimuli. These studies suggest that TRPA1 may be an intermediate where several different modalities converge to elicit pain, and that plants like mustard, garlic, and cinnamon have—for their protection—evolved chemicals that target this pathway.

TRPA genes also occur in invertebrate genomes; there are four in *Drosophila*, for instance. The *Drosophila* homolog closest to TRPA1 is sensitive to heat above ~27°C, and knockdown of dmTRPA1 abolishes thermotaxic behavior in fly larvae (Viswanath et al., 2003; Rosenzweig et al., 2005). Another *Drosophila* TRPA, dubbed *painless*, is expressed by polymodal nociceptors, is located in their branched sensory endings, and is involved in sensing both noxious hot temperatures (55°C) and intense mechanical stimuli (Tracey et al., 2003). Thus, a common theme for TRPA1 function is nociception, but the specific sensory modalities in mammals, especially the sensation of noxious cold, remain controversial.

To understand the role of TRPA1 in auditory and vestibular function as well as temperature, chemical, and mechanical sensation, we generated mice lacking a functional *Trpa1* gene. Surprisingly, TRPA1 is not necessary for hair-cell transduction, but mice lacking TRPA1 have reduced sensitivity to mustard oil and bradykinin, as well as to painful cold and mechanical stimuli.

**Results**

**Generation of *Trpa1*Δ/Δ Mice**

We designed a targeting vector to delete in mice the exon encoding for the pore domain of TRPA1. The S5 and S6 transmembrane domains and the pore loop that contains the selectivity filter of TRPA1 were replaced with a cassette containing an internal ribosome entry site (IRES) with a human placental alkaline phosphatase gene (PLAP) and a polyadenylation sequence (Figures 1A and 1B). Deletion of the pore-forming region of TRPA1 renders the channel nonconducting, and the resulting mutant allele forms a bicistronic mRNA transcript containing the 5’ end of TRPA1 followed by an independently translated human placental alkaline phosphatase gene. Since a truncated product of the *Trpa1* gene might still be produced and cause unwanted side effects, an endoplasmic reticulum (ER) retention signal encoded by the amino acid sequence KDEL and a stop codon were placed in frame with the exon before the IRES PLAP cassette. Any potential truncated product of *Trpa1* produced from the bicistronic transcript should be sequestered in the ER. Sequestration of the potential truncated TRPA1 fragment was confirmed by expressing the truncated fragment with the ER retention signal in human epithelial kidney (HEK) cells (data not shown).

Transfection of the linearized targeting vector into murine embryonic stem (ES) cells resulted in the deletion of one of the *Trpa1* alleles. Two independent ES cell lines carrying the targeted *Trpa1* mutation were injected into blastocysts to generate germline chimeric males. Mating of male chimeras with C57BL/6J or B6.129PF2/J produced heterozygote animals that were subsequently intercrossed. Southern blot analysis of DNA from progeny of heterozygote matings shows that the mutant allele has properly recombined into the *Trpa1* locus (Figure 1C). Matings of heterozygote animals resulted in a total of 227 animals with a ratio of 1.1:0.9:0.9 wild-type to heterozygote to mutant animals, a ratio close to the expected Mendelian ratio.

To ensure that the transcript was no longer present in mutant animals, mRNA from DRGs was harvested from mice of each genotype. Amplification of the transcript by RT-PCR, in a region after the site of deletion, indicated that *Trpa1* message was present in wild-type and heterozygote animals but absent in *Trpa1*Δ/Δ mice, suggesting that there was no functional TRPA1 protein in knockout animals (Figure 1D). Using primers that lie in the deletion site, quantitative RT-PCR confirmed that the *Trpa1* transcript was absent in *Trpa1*Δ/Δ mice and was reduced by 50% in heterozygote animals (Figure S2 in the Supplemental Data available with this article online).

**Auditory and Vestibular Sensitivity**

TRPA1 has been proposed as a candidate for the hair-cell transduction channel (Corey et al., 2004). We asked whether *Trpa1*Δ/Δ mice exhibit hearing and balance defects, if hair cells in *Trpa1*Δ/Δ mice contain functional transduction channels, and—if so—if the properties of transduction and adaptation are altered relative to wild-type mice.

**Behavioral Tests**

Adult wild-type and *Trpa1*Δ/Δ mice displayed a normal Preyer reflex, flicking their ears when startled with a loud sound, suggesting that auditory function was normal. *Trpa1*Δ/Δ mice swam normally, could maintain balance on a rotating rod, and could walk along the top of a thin wall, indicating normal vestibular function (data not shown).

**Auditory Brainstem Response**

To evaluate the function of the cochlea at different auditory frequencies, we measured auditory brainstem responses (ABRs) of wild-type, heterozygous, and *Trpa1*Δ/Δ mice, evoked with short tone pips. The overall ABR thresholds were nearly identical at all frequencies from 4 to 45.3 kHz, differing only at 32 kHz, where if anything the *Trpa1*Δ/Δ mice were more sensitive (Figure 2A).

**AM1-43 Accumulation in Utricle and Cochlea**

The fluorescent styryl dyes, FM1-43 and its fixable analog AM1-43, rapidly enter hair cells through their transduction channels, offering a simple test of functional transduction (Gale et al., 2001; Meyers et al., 2003). We dissected cochleas and utricles from wild-type, heterozygous, and *Trpa1*Δ/Δ mice and bathed them for 2 min in dye before washing, fixing, and colabeling for actin. By this measure, most hair cells possessed functional transduction channels, in both cochleas and utricles of both mutant and wild-type mice (Figures 2B and 2C).
We could not detect a difference in AM1-43 loading between the different genotypes.

**Transduction Current**

The best measure of transduction channel function is single-cell recording of currents elicited with calibrated deflection of hair bundles. We measured whole-cell transduction currents in mouse utricular hair cells from Trpa1<sup>2/2</sup> and Trpa1<sup>+/-</sup> littermate mice, aged P2 to P6, with genotype unknown to the experimenter. The properties of transduction and adaptation did not differ significantly between Trpa1<sup>-/-</sup> and Trpa1<sup>+/-</sup> hair cells (Figures 2D and 2E), and were similar to those reported previously for wild-type mice (Vollrath and Eatock, 2003). The average maximal transduction current, I<sub>max</sub>, for ten Trpa1<sup>-/-</sup> and five Trpa1<sup>+/-</sup> hair cells was 129 ± 18 and 131 ± 27 pA, respectively. Other measures of transduction and adaptation (resting open probability, operating range, time constant of decay, and extent of adaptation at steady state; Table 1) were normal. A rebound at the termination of negative deflections (Figure 2E) suggested that climbing adaptation to negative steps was normal. To assess adaptation more completely, we presented a series of test deflections before and during an adapting step and measured...
the resulting shift of the activation curve. $Trpa1^{-/-}$ hair cells had normal adaptation in response to both positive and negative adapting steps (Figures 2F and 2G). Taken together, these data suggest that hair cells in $Trpa1^{-/-}$ mice are normal. We cannot rule out more subtle defects.

Chemical Sensitivity
Mice lacking TRPA1 were then tested for oral sensitivity to the irritating or painful sensation elicited by mustard oil. Mice were allowed access to water for 3 hr/day, and water consumption was measured. No significant difference in normal water consumption was found.
among wild-type, heterozygote, and Trpa1⁻/⁻ mice. After several days, mustard oil was added to the water in different concentrations. At the highest concentration, 100 mM, wild-type, and heterozygote mice would not drink the water at all, whereas Trpa1⁻/⁻ mice consumed over a third of the normal amount (Figure 3A). Because mustard oil might also activate other channels expressed by trigeminal nociceptors, we tried lower concentrations. At all concentrations, Trpa1⁻/⁻ mice consumed more mustard oil-containing water than did wild-type mice, and heterozygote animals displayed an intermediate phenotype (Figure 3B).

Olfactory receptors may also contribute to the perception of mustard oil in this test. Therefore, we injected 20 µl of a 75 mM mustard oil solution into the plantar surface of a hind paw and recorded the amount of time the mouse spent licking, flinching, or flicking the affected paw. Trpa1⁻/⁻ mice demonstrated a decrease in this pain behavior compared to their wild-type counterparts (Figure 3C). Injection of a mineral oil control did not elicit a significant behavioral response from the animals. As in the oral sensitivity test, heterozygote mice had an intermediate phenotype, suggesting a gene dosage effect.

Because Trpa1⁻/⁻ mice showed some avoidance of mustard oil-containing water, we asked whether TRPA1 is the sole mediator of mustard oil sensitivity of DRG neurons. We cultured dissociated cells from wild-type and mutant DRGs and loaded them with Fluo-4 to detect Ca²⁺ entry upon chemical stimulation. TRPA1 is expressed in a subset of TRPV1-expressing DRG neurons (Kobayashi et al., 2005). To identify TRPV1-expressing cells, capsaicin (3 µM) was applied to DRG cultures first. In wild-type mice, 31% ± 4% of cells (mean ± SEM; n = 12) responded to capsaicin with a rise in Ca²⁺ fluorescence, and 25% ± 5% responded to capsaicin in Trpa1⁻/⁻ mice, which was not significantly different (Figures 3E-3G). We applied mustard oil (10 µM) 80 s later. The number of mustard oil-sensitive cells was significantly lower in knockouts (wild-type, 23% ± 4%; knockout, 12.5% ± 2.5%; p < 0.01; Figures 3E-3G). Moreover, there were almost no cells responding to both drugs in the knockout (wild-type, 13% ± 2%; knockout, 0.7 ± 0.3%; Figure 3G). Thus, there are still mustard oil-sensitive cells in Trpa1⁻/⁻ mice (Figure 3F), but these are not the TRPV1-expressing cells where most TRPA1 is expressed. The remaining response to mustard oil is apparently mediated by another receptor expressed in other neurons.

Mechanical Nociception

Heat

To study the involvement of TRPA1 in sensing noxious temperatures, animals of all three genotypes were subjected to hot temperatures known to elicit a nociceptive behavioral response. We placed mice on a hot plate at 50°C, 52°C, or 55°C, temperatures in the high range for TRPV1 and TRPV2 (Patapoutian et al., 2003), and recorded the latency to initial nociceptive behavior. As the temperature was increased, the latency decreased, but there were no observable differences between the Trpa1⁺/+, Trpa1⁻/⁻, and Trpa1⁻/⁻ animals (Figure 4A). Although no difference was expected, this indicates that pain avoidance mechanisms are intact in Trpa1⁻/⁻ mice.

Cold

A Peltier cooler was used to generate a cold surface maintained at 0°C ± 1°C, which is substantially below the apparent threshold of ~10°C for cold pain in rats (Allchome et al., 2005). A mouse was placed on the plate, and the number of paw withdrawal responses during 5 min was used as an integrated index of the nociceptive response to cold (Figure 4B). Trpa1⁻/⁻ animals were significantly less responsive to noxious cold than their wild-type and heterozygote littermates (p < 0.0004).

We also applied a drop of acetone to the dorsolateral surface of a hind paw to cause evaporative cooling, which evokes a brief period of shaking and elevation of the paw in mice (Carlton et al., 1994; Choi et al., 1994). Trpa1⁻/⁻ mice showed reduced sensitivity to the cooling sensation compared to wild-type and heterozygote mice (p < 0.02) (Figure 4C).

For both the cold plate and acetone tests, the difference between wild-type and knockout mice was larger for females than for males (Figure S1).

Table 1. Properties of Transduction and Adaptation

<table>
<thead>
<tr>
<th></th>
<th>Iₘₐₓ (pA)</th>
<th>Pᵥ (%)</th>
<th>Operating Range (nm)</th>
<th>τ₄ (ms)</th>
<th>Extent (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>155 ± 16</td>
<td>14 ± 1</td>
<td>749 ± 59</td>
<td>30 ± 2</td>
<td>76 ± 3</td>
<td>31</td>
</tr>
<tr>
<td>Trpa1⁻/⁻</td>
<td>131 ± 27</td>
<td>7 ± 1</td>
<td>841 ± 192</td>
<td>28 ± 8</td>
<td>79 ± 6</td>
<td>5</td>
</tr>
<tr>
<td>Trpa1⁻/⁻</td>
<td>129 ± 18</td>
<td>14 ± 3</td>
<td>812 ± 71</td>
<td>37 ± 7</td>
<td>71 ± 5</td>
<td>10</td>
</tr>
</tbody>
</table>

Values are mean ± SE. Pᵥ is percent of current activated at rest; operating range is 10%–90% of Iₘₐₓ. τ₄ is adaptation time constant measured from current decay for a half-maximal displacement; extent of adaptation measured from curve fitted to decay. Wild-type values from Vollrath and Eatock (2003).
Figure 3. Responses of Knockout Mice to Capsaicin and Mustard Oil

(A) Oral aversion to mustard oil (MO; allyl isothiocyanate). Water-deprived mice were allowed to drink from a sample bottle for 3 hr/day, and the volume consumed was measured. On days 1–3, the water was normal and consumption was ~2 ml; on day 4 it contained 100 mM mustard oil. Wild-type and heterozygote mice would not drink it on day 4; knockout mice still consumed ~40% of normal. Mean ± SEM; n = 5 mice of each genotype.

(B) Concentration dependence of oral aversion to MO. Shown is consumption on the test day relative to previous days as a function of MO concentration. Mean ± SEM; n = 5 of each genotype, except n = 1 for 1 mM. Knockout mice were consistently less deterred than wild-type by MO; heterozygote mice were consistently intermediate in phenotype.

(C) Pain response to subcutaneous mustard oil. MO (20 μl of 0.75% or 75 mM) was injected into the left hind footpad, and the duration of pain responses (licking, lifting) was measured. Knockout mice apparently felt less pain (**p = 0.01); heterozygotes had intermediate responses. Five animals of each genotype.

(D) Pain response to subcutaneous bradykinin. In another set of animals, bradykinin (300 ng in 0.9% saline) was injected into the left hind footpad. Knockout mice showed reduced pain-like behavior (**p = 0.014). Males and females; numbers as shown.
response up to the test limit of 300 g. Nevertheless, fewer knockout mice showed a pain response than wild-type, and the average threshold was higher in knockouts than in wild-type [241 ± 12 g [wild-type] versus 274 ± 7 g [knockout]; mean ± SEM; p = 0.01].

**Bradykinin-Induced Pain and Hyperalgesia**
Subcutaneous bradykinin causes inflammatory pain, and it has been proposed to activate TRPA1 via the B2R G protein-coupled receptor (Story et al., 2003). To test the role of TRPA1 in inflammatory pain, 300 ng of bradykinin in 10 µl saline was injected into the plantar surface of the mouse paw. After the injection, the three groups of mice displayed a flinching and licking behavior indicative of an irritant action of the peptide. We measured the cumulative time spent with the paw elevated during 15 min. Wild-type mice spent almost three times as long tending to the affected paw as Trpa1 knockout mice (22.1 ± 4.5 s versus 8.1 ± 2.2 s; p = 0.014), suggesting that bradykinin was less painful in knockout mice. Heterozygote animals displayed an intermediate effect (Figure 3D).

Bradykinin injected peripherally also causes hypersensitivity to mechanical stimuli. To determine whether this mechanical hyperalgesia is mediated by TRPA1, mice were tested with von Frey hairs for mechanical sensitivity 2 hr after injection. All animals had reduced thresholds following bradykinin, but wild-type mouse thresholds were reduced 5-fold, whereas the reduction in knockout mice was not significant (Figure 5B).

**Spared Nerve Injury**
Animals were treated to produce the spared nerve injury model of peripheral neuropathic pain, by ligation of the tibial and common peroneal nerves leaving the sural nerve intact, and were tested 7 and 14 days after surgery. After spared nerve injury, all three groups showed mechanical thresholds lowered by more than tenfold (Figure 5C). TRPA1 is apparently not involved in mechanical hypersensitivity after peripheral nerve injury. These observations are consistent with the idea that such mechanical hypersensitivity (tactile allodynia) is mediated by low-threshold, large, myelinated, nonpeptidergic Aδ fibers that normally sense innocuous stimuli such as touch, hair movement, or gentle pressure (Campbell et al., 1988; Koltzenburg et al., 1994) and do not express TRPA1 (Kobayashi et al., 2005). The presurgery mechanical pain sensitivity (Figure 5C) showed the same reduction in threshold in knockout and heterozygotes as that seen in a separate cohort of naive animals (Figure 5A), and pre-bradykinin injection (Figure 5B).

**Discussion**

**TRPA1 Is Not an Essential Component of Hair-Cell Transduction**
Despite strong evidence that TRPA1 mediates hair-cell mechanotransduction (Corey et al., 2004), mice lacking TRPA1 do not have any detectable vestibular or auditory defects. The mice showed no defects in balance or in the noise-evoked startle reflex. Mutant mice had normal hearing, as assessed by auditory brainstem recordings. Hair cells in both cochlea and utricle had functioning transduction channels based on the accumulation of AM1-43. Moreover, neonatal vestibular hair cells from Trpa1−/− mice displayed transduction currents in response to bundle deflections that were normal in terms of current amplitude, operating range and position, and time course and extent of adaptation.

Is TRPA1 the hair-cell mechanotransduction channel early in development? The knockout with morpholinos in zebrafish was tested in early stage larvae at 50–60 hr postfertilization, almost as soon as hair cells appeared, and the siRNA inhibition in mice was done in embryonic utricles (Corey et al., 2004). Perhaps TRPA1 is only used in developing hair cells. In the knockout mice, however, transduction currents were normal when tested at postnatal day 2, not long after transduction appears at E17. It seems unlikely that TRPA1 is used from E17 to P0, and then replaced by another channel postnatomally.

Is TRPA1 in just a subset of transduction channels in hair cells? Transduction channels are thought to be present at both ends of the tip links (Denk et al., 1995), but the structure of the tip link is not identical at both ends, showing two branches at the upper end and three or more at the lower end (Kachar et al., 2000), and so the molecular components at either end also may not be identical. Perhaps TRPA1 is only present at one end of the tip link. However, the total amplitudes of transduction currents were normal in Trpa1−/− mice, inconsistent with the idea that half the channels are missing.

In other studies with gene deletion in mice, function can remain if compensatory genes are upregulated. It is possible that another TRP channel in hair cells, perhaps even another subunit of the transduction channel, can compensate for the loss of TRPA1. However, no other TRP channel in mammalian genomes has the unique architecture of TRPA1 with its extended N terminus of ankyrin repeats. If this domain is essential for transduction, there is no other channel that can substitute. It seems clear from the phenotype of the Trpa1−/− mice that TRPA1 is not, at least, an essential component of the adult mouse hair-cell transduction channel. Still to be determined is why inhibiting its expression with morpholinos in developing zebrafish or with siRNAs in mouse cultures reduces hair-cell mechanotransduction currents (Corey et al., 2004).

**TRPA1 Participates in Sensitivity to Mustard Oil**

Behavioral aversion for mustard oil was greatly reduced in Trpa1−/− mice, suggesting the involvement of TRPA1 in sensing the painful stinging and burning caused by mustard oil. At the lowest concentration of mustard oil tested (0.1 mM), the mutant mice consumed slightly
more water than the baseline. The reason for increased consumption is not clear, but pungent compounds such as garlic, yellow mustard, and wasabi, which contain TRPA1-activating compounds (Bautista et al., 2005), are used as flavor enhancers by humans. Diminished noxious sensation of mustard oil in Trpa1−/− mice may unmask a preference for pungent compounds. At higher concentrations, mustard oil was partially aversive in Trpa1−/− mice, suggesting that the mice may smell or otherwise sense the mustard oil using a different nociceptive chemotransduction receptor. Indeed, our calcium imaging experiments in dissociated DRG neurons showed that, while TRPV1-positive cells in the Trpa1−/− mice were no longer sensitive to mustard oil, another population of cells remained responsive; these may express another receptor for mustard oil.

Trpa1−/− mice injected with mustard oil into the hind paw showed significantly less pain-like behavior, as assayed by licking or lifting the paw. TRPA1 does seem
TRPA1 in Pain Sensation

285

necessary for mediating the normal painful sensation elicited by mustard oil.

TRPA1 Participates in Bradykinin-Induced Pain and Mechanical Hypersensitivity

Trpa1 knockout mice appeared much less sensitive to bradykinin injected in a paw, suggesting that activation of this channel mediates the acute pain of bradykinin. In addition, bradykinin-induced mechanical hypersensitivity, tested 2 hr after injection, was largely missing in knockout mice. Both consequences are expected if TRPA1 mediates the inflammatory pain caused by bradykinin.

TRPA1 Participates in the Response to Painful Cold Temperatures

Trpa1−/− mice showed no difference from wild-type or heterozygote mice in their sensitivity to noxious hot stimuli (50°C–55°C), indicating that pain response pathways are intact. They did show reduced sensitivity to intense cold (0°C). Similarly, when acetone evaporation was used to elicit a cooling sensation, a reduced sensitivity was observed in mutant animals. The reduction in cold sensitivity was larger for female knockouts than for males (Figure S1). Sex differences in response to painful stimuli and the increased sensitivity of female rodents have been well documented; these differences have been partly attributed to the influence of gonadal steroid hormones (Berkley, 1997; Fillingim and Ness, 2000; Craft et al., 2004).

While the cold pain deficit in knockouts is consistent with a role for TRPA1 as a primary sensor for severe cold in mouse DRG (Story et al., 2003), its potential role as a cold sensor may be more complicated. In cultured rat DRGs, two distinct populations of neurons have been reported to respond to cold: one group of cells is activated at innocuous cold temperatures and is menthol sensitive; these neurons presumably express TRPM8. The second group is not sensitive to menthol but is also not activated by icilin or mustard oil, agonists of TRPA1, suggesting that TRPA1 is not expressed in this group and that the cold sensor is an unknown protein (Babes et al., 2004). There is a possible third cold-sensitive group, which is sensitive to both mustard oil and menthol (Babes et al., 2004; Reid, 2005). In cultured trigeminal neurons from rat, a population of cells sensitive to mustard oil and most likely expressing TRPA1 was identified. Only about 4% responded to a 5°C cold stimulus, but these were also menthol sensitive (Jordt et al., 2004). Similarly, about 16% of TRPA1-positive neurons in rat DRG also express TRPM8 (Kobayashi, et al., 2005), based on in situ hybridization. Thus, TRPA1 may function together with TRPM8, either as a primary sensor or as a downstream mediator, in a subset of nociceptors sensitive to colder temperatures.

Mustard oil evokes a sharp burning or stinging pain in human subjects (Reeh et al., 1986; Handwerker et al., 1991; Koltzenburg et al., 1992). In contrast to stimuli of ~15°C, which elicit a cool sensation that can be interpreted as unpleasant or even painful, intense cold stimuli (~ 0°C) produce a burning, stinging, pricking sharp pain (Morin and Bushnell, 1998) not unlike that evoked by mustard oil, which is consistent with the idea that TRPA1 is involved in signaling intense cold pain.

Regardless of mechanism, the behavioral deficit in Trpa1−/− mice indicates that TRPA1 contributes to the burning cold pain elicited by very cold temperatures.

TRPA1 Participates in the Response to Painful Cold Temperatures

TRPA1 contributes to sensitivity to mechanical pain. TRPA1-deficient mice displayed a deficit in sensing noxious punctate cutaneous mechanical stimuli, which elicit a pricking pain: they had higher thresholds than those of wild-type mice and had consistently and significantly reduced responses to a series of suprathreshold stimuli. It is possible that TRPA1 is part of a high-threshold mechanotransduction complex in the peripheral sensory system, perhaps directly gated by mechanical force. The participation of a Drosophila TRPA, painless, in mechanical nociception suggests an evolutionarily conserved role for this branch of the TRP family (Tracey et al., 2003; Corey et al., 2004). Several biophysical features of TRPA1 are reminiscent of the high-threshold mechanoreceptor, which is a nonselective cation channel with a reversal potential around 0 mV that can be blocked by gadolinium, similar to some characteristics of heterologously expressed TRPA1 (Hu et al., 2006). Ruthenium Red, a TRP channel blocker, can also inhibit the high-threshold mechanotransducer in DRG neurons. It is equally possible that a different mechanosensitive protein leads indirectly to the activation of TRPA1, which then provides the depolarizing current for spike initiation. Fast measurements of mechanically elicited currents in TRPA1-expressing cells should reveal whether the transduction current is too fast for a second messenger.

In addition, pricking pain can be evoked by activation of Aδ mechano-nociceptors, but these do not express TRPA1 (Kobayashi et al., 2005), so it is likely that while TRA1 may contribute to mechanotransduction in some C fiber nociceptors, another high-threshold mechanotransducer exists as well.

While this manuscript was in review, a paper from Bautista et al. (2006) appeared that describes the phenotype of another TRPA1 knockout mouse. Although the phenotypes of these two lines are generally similar, Bautista et al. did not observe a deficit in cold pain sensitivity or in mechanical pain. The reasons for these differences are unclear but may lie in the test specifics. Bautista et al. only used male mice for cold behavioral tests, whereas we observed the greatest difference in cold sensitivity in females. They focused on mechanical pain thresholds, whereas we observed the greatest difference in higher-force response rates. The population of neurons for calcium imaging from adult DRG neurons in our study is different from the newborn trigeminal neurons used by Bautista et al. (2006). During the early postnatal period, the neurotrophins are still specifying the functional identity of sensory neurons (Lewin and Mendell, 1993). The distinction in the population of cells is highlighted by the difference in the number of TrkA-positive neurons in early postnatal animals and adult animals (McMahon et al., 1994; Molliver et al., 1997). It will be important to resolve these issues, to help understand whether TRPA1 can be a primary sensory receptor channel or serves exclusively as a downstream integrator of diffusible messengers.
Experimental Procedures

Construction of Trpa1 Knockout Mouse

Targeting Vector

Sequences flanking the exons encoding the S5 and S6 transmembrane domains were selected as homologous arms for the Trpa1 knockout targeting vector. The 3.4 kb 5′ homologous arm (31166–34574 bp, using the first base pair of the Trpa1 start codon as 1 bp in the genomic Trpa1 sequence), followed by a KDEL sequence and a stop codon, was generated using polymerase chain reaction (PCR) with E14 ES cell DNA as template. A 3.4 kb 5′ and a stop codon, was generated using polymerase chain reaction in the genomic Trpa1

34574 bp, using the first base pair of the

Trpa1 knockout targeting vector. The 3.4 kb 5′ homologous arm for negative selection (Figure 1). The Trpa1 IPα PKGNeo/FRT KO targeting vector was linearized with Pml, phenol-chloroform extracted, and transfected into E14 ES cells (Simpson et al., 1997).

Targeted Disruption of Murine Trpa1

Murine E14 ES cells were transfected with 50 μg of linearized Trpa1 IPα PKGNeo/FRT KO targeting vector. Cells were allowed to recover for 24 hr before selection in media containing 300 μg/ml of G418 and 2 μg/ml ganciclovir (Invitrogen Corp., Carlsbad, CA). DNA samples were prepared for Southern analysis using initially screened homologous recombination of both arms by PCR, and confirmed by Southern blot hybridization using radiolabeled probes that lie in regions outside of the targeting vector. The 5′ probe was generated by amplifying a fragment spanning 25683–26080 bp of the Trpa1 genomic sequence and TA cloning it into a pCR II vector (Invitrogen Corp., Carlsbad, CA). The 3′ probe spanning 41345–42407 bp was similarly generated. Mouse genomic tail DNA was cleaved with either NheI and BamHI for annealing to the 5′ probe or Stul and BamHI for the detection with the 3′ probe. Restriction digests were electrophoresed on a 0.6% agarose 1X TAE gel and transferred onto Nytran N+ membrane (Amersham Biosciences, Piscataway, NJ) for Southern blot analysis.

Two ES cell clones containing the appropriate crossover events were injected into C57/B6 blastocystcs to generate chimeric animals. Male chimeras capable of transmitting the disrupted Trpa1 allele were selected and crossed with female C57Bl/6J or B6129P1/F2J mice. F1 progeny from these crosses were genotyped for the mutant allele using primer pairs oligo 473 5′-TCTGCGAGAGCTCTAGGTCGTTGCTTGCTCTTA-3′ and oligo 474 5′-TCATCTGGGCAACAATGTCACCTGCT-3′ for the wild-type allele. Oligo 425 5′-CCTCCAATCGTGATCTTCAGTCTAAGTTCTAGT-3′ and oligo 427 5′-GAGGATTTAATGCTACTTACAG TATCTCGGCCGTCC-3′ were used to amplify a novel junction created in the Trpa1 deletion allele. Trpa1+/- heterozygotes were then intercrossed to produce Trpa1+/- mutant mice.

Detection of Trpa1 Transcript

Mice of the appropriate genotypes were sacrificed, and DRGs were obtained from these animals. The DRGs were immediately placed in Tri Reagent (Ambion Inc., Austin, TX), homogenized by forcing the tissue and Tri Reagent through a 20 gauge needle several times followed by disruption through a 25 gauge needle using a 3 ml syringe, and extracted for total RNA as described by the manufacturer. A poly-dT primer was used for the reverse transcription reaction in conjunction with Moloney murine leukemia virus reverse transcriptase (MMLV RT) (BD Bioscience, San Jose, CA) to generate DNA as template for PCR amplification. Primers that are spanned by introns were designed to amplify murine β-actin (5′-GGGCGACAGGACAGAGGAGAATGATC-3′ and 5′-ACGCACAGTCTTCTCCATGC-3′) and Trpa1 (5′-ACAAGAAGTCACAAATGTCGACACA-3′ and 5′-TTAATGCGTGTTAGACGAAATTT-3′) as template. PCR reactions were set up by combining 0.12 μM final concentration of each primer pair, the appropriate amount of cDNA, and 12.5 μl of 2× SYBR Green supermix, and adjusted to a final volume of 25 μl with H2O (Bio-Rad, Hercules, CA). The reaction was initially denatured at 95 °C for 3 min, followed by 40 cycles of 30 s of denaturation, 30 s of annealing, and 45 s of a extension on a MJ Research thermal cycler equipped with a Chromo4 detector. The fluorescence and analysis was done using the Opticon Monitor version 2 analysis software. Linear regression to determine the PCR efficiency for the Trpa1 primers was determined, and relative amounts of transcripts were calculated as described by Ramakers et al. (2003).

Inner Ear Behavioral Tests

The Preyer (ear flick) reflex was elicited with 19.8 kHz, 96 dB sound from a source positioned about 30 cm from the mouse and assessed visually. Balance was tested by assessing ability to swim in deep water (mice with inner ear dysfunction tumble rapidly), to walk on the top of a 2 mm thick wall, and to maintain position on a 12 mm rotating rod.

Auditory Brainstem Form

Mice were anesthetized with 100 mg/kg ketamine and 20 mg/kg xylazine (Henry Schein, Melville, NY). Platinum needle electrodes (Grass Telefactor, West Warwick, RI) were placed at the vertex and the mastoid, with a ground near the tail. Tucker-Davis System 3 instrumentation (Tucker-Davis Technologies, Alachua, FL) was used to generate stimuli and acquire the evoked response. Tone pips (5 ms; 0.5 ms rise time) were presented through a closed field speaker at 25 s−1 at each frequency. Sound pressure level was varied in 5 dB steps from 10 to 90 relative dB. After acquisition and digitization, evoked potential wave forms were visually inspected to obtain a threshold value.

AM1-43 Dye Accumulation

Mice and cochleas (P4) were dissected as described for physiology, below. At this age, the tectorial membrane is not fully formed, and protease was not required to remove it. Uricules and cochleas were treated with 5 μM FM1-43 or AM1-43 (Invitrogen Corp., Carlsbad, CA) for 2 min, then washed. Tissues treated with FM1-43 were then viewed with a confocal microscope (Zeiss LSM510). Tissues treated with AM1-43 were fixed with 4% formaldehyde for 2 hr at room temperature and washed with PBS, and then hair bundles were labeled with Alexa Fluor 647 phalloidin. Images shown are maximum value projections of four to five images taken at 2 μm intervals, near the apical surface for actin and just below the apical surface for dye.

Hair-Cell Physiology

Preparation

Semi-intact preparations of the mouse utricle were made as described previously (Rüsch and Eatock, 1996; Vollrath and Eatock, 2003). Briefly, utricles of early postnatal mice (P2–P6) were exposed by opening the otic capsule, bathed for 20 min in standard extracellular solution (below) with 100 μM protease type XXIV (Sigma, St. Louis, MO, St. Louis, MO) to facilitate removal of the otolithic membranes, and then dissected out and viewed on an upright microscope (Axioskop FS; Zeiss, Oberkochen, Germany) with a water immersion objective (63×) and differential interference contrast optics, all at 22–24°C. The extracellular solution for dissection and perfusion contained 144 mM NaCl, 0.7 mM NaH2PO4, 5.8 mM KCl, 1.3 mM CaCl2, 0.9 mM MgCl2, 5.6 mM D-glucose, 10 mM HEPES-NaOH, vitamins and minerals as in Eagle’s MEM (pH 7.4, ~320 mmol/kg). The recording pipette contained 140 mM KCl, 0.1 mM CaCl2, 10 mM EGTA-KOH, 3.5 mM MgCl2, 2.5 mM NaATP, 5 mM HEPES-KOH, 0.1 mM Li-GTP, 0.1 mM Na-cAMP (pH 7.4, ~300 mmol/kg).

Recording

Pipettes (3–5 MΩ) were pulled from R6 glass (Garnier Glass, Claremont, CA). Hair-cell transduction currents were recorded in the whole-cell voltage-clamp mode, at ~64 mV, with an Axopatch 200B amplifier. Stimulus waveforms were controlled by pClamp 9.0.
solution without Ca\(^{2+}\) or Mg\(^{2+}\) (HBSS; Invitrogen Corp., Carlsbad, CA) driven by a piezoelectric stimulator were brought into contact with the short edge of the hair bundle. Stimulus rise time (~1 ms; 10%–90% rise time) was measured with a photodiode; resonance was avoided by filtering the driving signal. Signal "creep" was less than 10% (Corey and Hudspeth, 1980).

Stimulus Protocols and Data Analysis
The decay of the transduction current during step deflections of the bundle was fitted with a single-exponential function.

\[
i(t) = A_1 e^{-t/\tau_A} + I_{SS}
\]

\(I\) is current, \(t\) is time, \(A_1\) is the amplitude of the exponential term, \(\tau_A\) is the time constant of adaptation, and \(I_{SS}\) is the current level at steady state. To calculate the percent decay of the transducer current, \(I_{SS}\) was taken from the exponential fit for the steady-state current. \(I(X)\) relations were fitted with second-order Boltzmann functions:

\[
i(X) = \frac{I_{SS}}{1 + e^{(X - X_{50})/a}}
\]

\(A_1\) and \(A_2\) are constants that determine the steepness of the function, and \(P_0\) and \(P_1\) are constants that set the position of the function along the x axis. From the Boltzmann fits of \(I(X)\) relations, we measured the resting open probability, \(P_0\), and the operating range corresponding to 10%–90% of \(I_{max}\). To compare adaptation between cells, we used stimuli that evoked half-maximal activation of the transducer current.

Mechano-Nociception Assays
For von Frey filaments, mice were placed in a 2 in cubicule made of wire mesh. Animals were habituated in the cubicules for 30 min/day for 3–7 days. For thresholds, von Frey hair tests were done using calibrated filaments (0.008–2 g; Stoelting Co., Wood Dale, IL), starting with the stiffest. Various regions of the plantar surface of the mouse hind foot were subjected to each filament eight times at 1/s, with the filament positioned perpendicular to the plantar portion of the paw and pressed until a perceptible bend was observed, only when the mouse was not moving. Two out of eight paw withdrawals was a positive response for threshold. Over the whole force range, the number of paw withdrawals for each force was expressed as a percentage (Pertin et al., 2005).

For the Randall-Selitto test, mice were suspended in a restraining sling. They were habituated for 20 min/day for 2 days before testing. A blunt tip (0.7 mm) probe coupled to a digital force sensor (Model 2500, ITC Life Science, Woodland Hills, CA) was pressed against a paw until pain was signified by a withdrawal or vocalization, and the force required was recorded. Forces were not applied beyond 300 g, to avoid tissue damage.

Bradykinin Injection
After testing with thermal, chemical, and mechanical stimuli (three trials each), mice were treated with 300 ng of bradykinin (Sigma, St. Louis, MO) in 0.9% saline (10 \(\mu\)l), and the cumulative time spent licking or flicking the injected paw over a 15 min period was recorded. Two hours after injection, the mice were tested again for hyperalgesia.

Spared Nerve Injury
Unilateral spared nerve injury was done by exposing the sciatic nerve in the thigh region of the mouse, cutting and ligating the tibial and common peroneal nerves, and leaving the remaining sural nerve intact (Decoster and Woolf, 2000). Animals were subjected to testing at 7 days and at 14 days after lesioning, in the plantar region of the left hind foot that is innervated by the sural nerve.

Animal Protocols
All experiments were approved by the Animal Care Committee of the Massachusetts General Hospital or Harvard Medical School and carried out according to the ethical guidelines of the International Association for the Study of Pain (Zimmermann, 1983).

Statistical Analysis
The genotypes of the mice were blinded to the experimenters for all of the behavioral experiments. A single-factor ANOVA was used for all statistical measures of behavior.
Supplemental Data

The Supplemental Data include two supplemental figures and can be found with this article online at http://www.neuron.org/cgi/content/full/50/2/277/DC1/.

Acknowledgments

We thank Tam Thompsen, Yiping Zhou, and Lina Du for ES cell advice and blastocyst injections; Gui-Lan Yao and Bruce Bean for help with D RG dissection; Lisa Goodrich for the pPT0 plasmid with the IRES PLAP pA cassette; Michael Deans for advice on murine E14 ES cell culture and on generation of Trpα1 mutant mice; Paul Niksch for dissecting mouse cochlear; Joe Corey for vestibular testing; and Stéphane Maison for technical advice on auditory brainstem recordings. We are also grateful for advice and comments from members of the Woolf laboratory. Supported by NIH grants NS-039518 and NS-038253 (to C.J.W.) and DC-00304 (to D.P.C.). D.P.C. is an Investigator and K.Y.K. and M.A.V. are Associates of the Howard Hughes Medical Institute.

Received: December 30, 2005
Revised: February 23, 2006
Accepted: March 31, 2006
Published: April 19, 2006

References


